Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 46
1.
Anal Sci ; 40(5): 891-905, 2024 May.
Article En | MEDLINE | ID: mdl-38472735

Combating Pseudomonas aeruginosa infection is challenging. It secretes pyocyanin (PCN) pigment that contributes to its virulence. Neutralizing PCN via reaction with thiol-containing compounds may represent a potential therapeutic option. This study investigates the neutralization reaction between PCN and N-acetyl cysteine (NAC) for bacterial inhibition and explores its mechanism of action. The neutralization adduct (PCN-NAC) was synthesized by reacting the purified PCN and NAC. The adduct was analyzed and its structure was elucidated. LC-MS/MS method was developed for the determination of PCN-NAC in P. aeruginosa cultures post-treatment with NAC (0-5 mg/mL). The corresponding anti-bacterial potential was estimated and compared to nanoparticles (NPs) alone and under stress conditions. In silico studies were performed to support explaining the mechanism of action. Results revealed that PCN-NAC was exclusively detected in NAC-treated cultures in a concentration-dependent manner. PCN-NAC concentration (230-915 µg/mL) was directly proportional to the reduction in the bacterial viable count (28.3% ± 7.1-87.5% ± 5.9) and outperformed all tested NPs, where chitosan NPs induced 56.9% ± 7.9 inhibition, followed by zinc NPs (49.4% ± 0.9) and gold NPs (17.8% ± 7.5) even post-exposure to different stress conditions. A concomitant reduction in PCN concentration was detected. In silico studies revealed possible interactions between key bacterial proteins and PCN-NAC rather than the NAC itself. These results pose NAC as a potential choice for the management of P. aeruginosa infection, where it neutralizes PCN via the formation of PCN-NAC adduct.


Acetylcysteine , Pseudomonas aeruginosa , Pyocyanine , Tandem Mass Spectrometry , Virulence Factors , Pseudomonas aeruginosa/drug effects , Pyocyanine/metabolism , Pyocyanine/antagonists & inhibitors , Pyocyanine/analysis , Pyocyanine/chemistry , Virulence Factors/antagonists & inhibitors , Virulence Factors/metabolism , Acetylcysteine/chemistry , Acetylcysteine/pharmacology , Chromatography, Liquid , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Liquid Chromatography-Mass Spectrometry
2.
Mikrochim Acta ; 190(11): 441, 2023 10 16.
Article En | MEDLINE | ID: mdl-37845505

Detecting sputum pyocyanin (PYO) with a competitive immunoassay is a promising approach for diagnosing Pseudomonas aeruginosa respiratory infections. However, it is not possible to perform a negative control to evaluate matrix-effects in competitive immunoassays, and the highly complex sputum matrix often interferes with target detection. Here, we show that these issues are alleviated by performing competitive immunoassays with a paper biosensor. The biosensing platform consists of a paper reservoir, which contains antibody-coated gold nanoparticles, and a substrate containing a competing recognition element, which is a piece of paper modified with an albumin-antigen conjugate. Detection of PYO with a limit of detection of 4.7·10-3 µM and a dynamic range between 4.7·10-1 µM and 47.6 µM is accomplished by adding the sample to the substrate with the competing element and pressing the reservoir against it for 5 min. When tested with patient samples, the biosensor was able to qualitatively differentiate spiked from non-spiked samples, whereas ELISA did not show a clear cut-off between them. Furthermore, the relative standard deviation was lower when determining sputum with the paper-based biosensor. These features, along with a mild liquefaction step that circumvents the use of harsh chemicals or instruments, make our biosensor a good candidate for diagnosing Pseudomonas infections at the bedside through the detection of sputum PYO.


Biosensing Techniques , Metal Nanoparticles , Pseudomonas Infections , Humans , Pyocyanine/analysis , Sputum/chemistry , Gold , Pseudomonas Infections/diagnosis , Immunoassay
3.
Anal Chem ; 95(5): 2690-2697, 2023 02 07.
Article En | MEDLINE | ID: mdl-36693215

There is a critical need for sensitive rapid point-of-care detection of bacterial infection biomarkers in complex biological fluids with minimal sample preparation, which can improve early-stage diagnosis and prevent several bacterial infections and fatal diseases. A solution-based surface-enhanced Raman scattering (SERS) detection platform has long been sought after for low cost, rapid, and on-site detection of analyte molecules, but current methods still exhibit poor sensitivity. In this study, we have tuned the morphology of the surfactant-free gold nanostars (GNSs) to achieve sharp protruding spikes for maximum SERS enhancement. We have controlled the GNS spike morphologies and optimized SERS performance in the solution phase using para-mercaptobenzoic acid as an SERS probe. To illustrate the potential for point-of-care applications, we have utilized a portable Raman instrument for measurements. For pathogenic agent sensing applications, we demonstrated rapid and sensitive detection of the toxin biomarker pyocyanin (PYO) used as the bacterial biomarker model system. Pyocyanin is a toxic compound produced and secreted by the common water-borne Gram-negative bacterium Pseudomonas aeruginosa, a pathogen known for advanced antibiotic resistance and association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The limit of detection (LOD) achieved for PYO was 0.05 nM using sharp branched GNSs. Furthermore, as a proof of strategy, this SERS detection of PYO was performed directly in drinking water, human saliva, and human urine without any sample treatment pre-purification, achieving an LOD of 0.05 nM for drinking water and 0.4 nM for human saliva and urine. This work provides a proof-of-principle demonstration for the high sensitivity detection of the bacterial toxin biomarker with minimal sample preparation: the "mix and detect" detection of the GNS platform is simple, robust, and rapid, taking only 1-2 min for each measurement. Overall, our SERS detection platform shows great potential for point-of-need sensing and point-of-care diagnostics in biological fluids.


Drinking Water , Metal Nanoparticles , Humans , Pyocyanine/analysis , Spectrum Analysis, Raman/methods , Gold , Biomarkers
4.
Bioelectrochemistry ; 140: 107747, 2021 Aug.
Article En | MEDLINE | ID: mdl-33618190

During infections, fast identification of the microorganisms is critical to improve patient treatment and to better manage antibiotics use. Electrochemistry exhibits several advantages for rapid diagnostic: it enables easy, cheap and in situ analysis of redox molecules in most liquids. In this work, several culture supernatants of different Pseudomonas aeruginosa strains (including PAO1 and its isogenic mutants PAO1ΔpqsA, PA14, PAK and CHA) were analyzed by square wave voltammetry on glassy carbon electrode during the bacterial growth. The obtained voltamograms shown complex traces exhibiting numerous redox peaks with potential repartitions and current amplitudes depending on the studied bacterium and/or growth time. Among them, some peaks were clearly associated to the well-known redox toxin Pyocyanin (PYO) and the autoinducer Pseudomonas Quinolone Signal (PQS). Other peaks were observed that are not yet attributed to known secreted species. Each complex electrochemical response (number of peaks, peak potential and amplitude) can be interpreted as a fingerprint or "ID-card" of the studied strain that may be implemented for fast bacteria strain identification.


Pseudomonas aeruginosa/metabolism , Electrochemical Techniques , Humans , Oxidation-Reduction , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/growth & development , Pyocyanine/analysis , Pyocyanine/metabolism , Quinolones/analysis , Quinolones/metabolism
5.
Chemphyschem ; 22(2): 160-167, 2021 01 18.
Article En | MEDLINE | ID: mdl-33206442

Early-stage detection of diseases caused by pathogens is a prerequisite for expedient patient care. Due to the limited signal-to-noise ratio, molecular diagnostics needs molecular signal amplification after recognition of the target molecule. In this present study, we demonstrate the design of plasmonically coupled bimetallic Ag coated Au nanostar dimers with controlled nanogap using rectangular DNA origami. We further report the utility of the designed nanostar dimer structures as efficient SERS substrate for the ultrasensitive and label-free detection of the pyocyanin molecule, which is a biomarker of the opportunistic pathogenic bacteria, Pseudomonas aeruginosa. The experimental results showed that the detection limit of pyocyanin with such nanoantenna based biosensor was 335 pM, which is much lower than the clinical range of detection. Thus, fast, sensitive and label-free detection of pyocyanin at ultralow concentration in an infected human body can pave a facile route for early stage warning for severe bacterial infections.


DNA/chemistry , Metal Nanoparticles/chemistry , Pyocyanine/analysis , Biomarkers/analysis , Biosensing Techniques/methods , Gold/chemistry , Limit of Detection , Nucleic Acid Conformation , Silver/chemistry , Spectrum Analysis, Raman
6.
Sensors (Basel) ; 20(18)2020 Sep 13.
Article En | MEDLINE | ID: mdl-32933125

Pseudomonas aeruginosa (PA) is a pathogen that is recognized for its advanced antibiotic resistance and its association with serious diseases such as ventilator-associated pneumonia and cystic fibrosis. The ability to rapidly detect the presence of pathogenic bacteria in patient samples is crucial for the immediate eradication of the infection. Pyocyanin is one of PA's virulence factors used to establish infections. Pyocyanin promotes virulence by interfering in numerous cellular functions in host cells due to its redox-activity. Fortunately, the redox-active nature of pyocyanin makes it ideal for detection with simple electrochemical techniques without sample pretreatment or sensor functionalization. The previous decade has seen an increased interest in the electrochemical detection of pyocyanin either as an indicator of the presence of PA in samples or as a tool for quantifying PA virulence. This review provides the first overview of the advances in electrochemical detection of pyocyanin and offers an input regarding the future directions in the field.


Biomarkers/analysis , Biosensing Techniques , Pseudomonas Infections , Pyocyanine/analysis , Humans , Pseudomonas Infections/diagnosis , Pseudomonas aeruginosa
7.
ACS Synth Biol ; 9(5): 1117-1128, 2020 05 15.
Article En | MEDLINE | ID: mdl-32208720

There is a growing interest in mediating information transfer between biology and electronics. By the addition of redox mediators to various samples and cells, one can both electronically obtain a redox "portrait" of a biological system and, conversely, program gene expression. Here, we have created a cell-based synthetic biology-electrochemical axis in which engineered cells process molecular cues, producing an output that can be directly recorded via electronics-but without the need for added redox mediators. The process is robust; two key components must act together to provide a valid signal. The system builds on the tyrosinase-mediated conversion of tyrosine to L-DOPA and L-DOPAquinone, which are both redox active. "Catalytic" transducer cells provide for signal-mediated surface expression of tyrosinase. Additionally, "reagent" transducer cells synthesize and export tyrosine, a substrate for tyrosinase. In cocultures, this system enables real-time electrochemical transduction of cell activating molecular cues. To demonstrate, we eavesdrop on quorum sensing signaling molecules that are secreted by Pseudomonas aeruginosa, N-(3-oxododecanoyl)-l-homoserine lactone and pyocyanin.


Monophenol Monooxygenase/metabolism , Synthetic Biology/methods , Tyrosine/metabolism , 4-Butyrolactone/analogs & derivatives , 4-Butyrolactone/analysis , 4-Butyrolactone/pharmacology , Culture Media/chemistry , Electrochemical Techniques , Electrodes , Gold/chemistry , Levodopa/chemistry , Levodopa/metabolism , Monophenol Monooxygenase/genetics , Oxidation-Reduction , Plasmids/genetics , Plasmids/metabolism , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Pyocyanine/analysis , Pyocyanine/pharmacology , Quorum Sensing/drug effects , Tyrosine/chemistry
8.
Anal Biochem ; 593: 113586, 2020 03 15.
Article En | MEDLINE | ID: mdl-31981486

Pyocyanin is a virulence factor solely produced by the pathogen Pseudomonas aeruginosa. Pyocyanin is also a redox active molecule that can be directly detected by electrochemical sensing. A nanograss (NG) based sensor for sensitive quantification of pyocyanin in sputum samples from cystic fibrosis (CF) patients is presented here. The NG sensors were custom made in a cleanroom environment by etching nanograss topography on the electrode surface followed by depositing 200 nm gold. The NG sensors were utilized for amperometric quantification of pyocyanin in spiked hypertonic saline samples, resulting in a linear calibration curve with a R2 value of 0.9901 and a limit of detection of 172 nM. The NG sensors were applied in a small pilot test on five airway samples from five CF patients. The NG sensor was capable of identifying P. aeruginosa in the airway samples in 60 s without any sample pretreatment.


Biosensing Techniques/methods , Cystic Fibrosis/microbiology , Electrochemical Techniques/methods , Nanotechnology , Pseudomonas Infections/diagnosis , Pseudomonas aeruginosa/isolation & purification , Pyocyanine/analysis , Humans , Sputum/chemistry
9.
PLoS One ; 14(7): e0216438, 2019.
Article En | MEDLINE | ID: mdl-31361746

Successful antibiotic treatment of infections relies on accurate and rapid identification of the infectious agents. Pseudomonas aeruginosa is implicated in a wide range of human infections that mostly become complicated and life threating, especially in immunocompromised and critically ill patients. Conventional microbiological methods take more than three days to obtain accurate results. Pyocyanin is a distinctive electroactive biomarker for Pseudomonas aeruginosa. Here, we have prepared polyaniline/gold nanoparticles decorated ITO electrode and tested it to establish a rapid, diagnostic and highly sensitive pyocyanin sensor in a culture of Pseudomonas aeruginosa clinical isolates with high selectivity for traces of pyocyanin when measured in the existence of different interferences like vitamin C, uric acid, and glucose. The scanning electron microscopy and cyclic voltammetry techniques were used to characterize the morphology and electrical conductivity of the constructed electrode. The determined linear range for pyocyanin detection was from 238 µM to 1.9 µM with a detection limit of 500 nM. Compared to the screen-printed electrode used before, the constructed electrode showed a 4-fold enhanced performance. Furthermore, PANI/Au NPs/ITO modified electrodes have demonstrated the ability to detect pyocyanin directly in Pseudomonas aeruginosa culture without any potential interference with other species.


Electrochemical Techniques/methods , Gold/chemistry , Metal Nanoparticles/chemistry , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Pyocyanine/analysis , Aniline Compounds/chemistry , Biomarkers/analysis , Biosensing Techniques/economics , Biosensing Techniques/methods , Electrochemical Techniques/economics , Electrodes , Humans , Limit of Detection , Pseudomonas Infections/diagnosis , Time Factors
10.
Anal Chem ; 91(14): 8835-8844, 2019 07 16.
Article En | MEDLINE | ID: mdl-31198034

Polyacrylamide-coated, carbon nanotube (PA/CNT) electrodes were prepared by an inkjet printing process and used to measure pyocyanin and uric acid in a wound fluid simulant at 37 °C. These two molecules are potential indicators of infection, and therefore their detection could prove useful for monitoring wound healing. Pyocyanin is a marker for the common wound bacterium Pseudomonas aeruginosa. Our long-term goal is to use these inexpensive and disposable electrodes to measure biomarkers of wound healing directly. In this proof-of-concept work, studies were performed in a wound fluid simulant to evaluate the stability of the electrodes and their responsiveness for the two bioanalytes. The PA/CNT inkjet-printed electrodes and electrical contacts were stable with unchanging physical and electrochemical properties in the wound fluid simulant over a 7-8-day period at 37 °C. The detection figures of merit for pyocyanin in the simulant at 37 °C were as follows: linear over the physiologically relevant range = 0.10 to 100 µmol L-1 (R2 = 0.9992), limit of detection = 0.10 µmol L-1 (S/N = 3), sensitivity = 35.6 ± 0.8 mA-L mol-1 and response variability ≤4% RSD. The detection figures of merit for uric acid in the simulant at 37 °C were as follows: linear over the physiologically relevant range = 100 to 1000 µmol L-1 (R2 = 0.9997), sensitivity = 2.83 ± 0.01 mA-L mol-1, and response variability ≤4% RSD. The limit of detection was not determined. The PA/CNT electrodes were also used to quantify pyocyanin concentrations in cell-free culture media from different strains of P. aeruginosa. The detected concentrations ranged from 1.00 ± 0.02 to 118 ± 6 µM depending on the strain.


Culture Media/analysis , Nanotubes, Carbon/chemistry , Pyocyanine/analysis , Uric Acid/analysis , Wounds and Injuries/pathology , Biosensing Techniques/instrumentation , Electrodes , Equipment Design , Pseudomonas aeruginosa/isolation & purification , Wounds and Injuries/microbiology
11.
Anal Bioanal Chem ; 411(17): 3829-3838, 2019 Jul.
Article En | MEDLINE | ID: mdl-31172234

The rapid detection of bacterial strains has become a major topic thoroughly discussed across the biomedical field. Paired with the existence of nosocomial pathogen agents that imply extreme medical and financial challenges throughout diagnosis and treatment, the development of rapid and easy-to-use sensing devices has gained an increased amount of attention. Moreover, antibiotic resistance considered by World Health Organization as one of the "biggest threats to global health, food security, and development today" enables this topic as high priority. Pseudomonas aeruginosa, one of the most ubiquitous bacterial strains, has various quorum-sensing systems that are a direct cause of their virulence. One of them is represented by pyocyanin, a blue pigment with electroactive properties that is synthesized from early stages of bacterial colonization. Thus, the sensitive detection of this biomarker could enable a personalized and efficient therapy. It was achieved with the development of an electrochemical sensor based on a thermosensitive polymer, modified with Au/Ag nanoalloy for the rapid and accurate detection of pyocyanin, a virulence biomarker of Pseudomonas aeruginosa. The sensor displayed a linear range from 0.12 to 25 µM, and a limit of detection of 0.04 µM (signal/noise = 3). It was successfully tested in real samples spiked with the target analyte without any pretreatment other than a dilution step. The detection of pyocyanin with high recovery in whole blood in a time frame of 5-10 min from the moment of collection was performed with this electrochemical sensor. Graphical abstract.


Alloys/chemistry , Gold/chemistry , Hydrogels/chemistry , Metal Nanoparticles/chemistry , Pyocyanine/analysis , Silver/chemistry , Agar/chemistry , Artifacts , Biomarkers/analysis , Biosensing Techniques , Electrochemical Techniques/methods , Limit of Detection , Point-of-Care Systems , Pseudomonas aeruginosa/isolation & purification , Pyocyanine/blood , Reproducibility of Results , Temperature
12.
Anal Chem ; 91(11): 7487-7494, 2019 06 04.
Article En | MEDLINE | ID: mdl-31070026

We report the design and operation of an integrated microfluidics system that uses cellulose ester dialysis membranes coupled with disposable carbon and copper electrodes for monitoring and concentration of microliter scale biofluid samples. Dialysis membranes are typically used for buffer exchange, but in this work, membranes with 100-500 Da MWCO were evaluated for feasibility in concentrating small volume samples. This is an alternative to the use of centrifugation, ultrafiltration, and evaporative methods, where quantitative inline monitoring of sample concentration is challenging. The impact of draw solution used, osmotic concentration gradient, pH, and temperature were studied for the optimized concentration of bodily fluids. A system using sucrose in the draw solution generated the best results, with water removal rates of 0.023 mL min-1. PBS, urine, and saliva samples were concentrated up to 20-fold (PBS), 15-fold (urine), and 5-fold (saliva) in less than 3 h. The osmotic system further showed a 5-fold increase in the electrochemical signal for detecting pyocyanin, a biomarker for early diagnostics of the Pseudomonas aeruginosa pathogen in urine and saliva samples. Overall, the osmotic system can be easily integrated with point of care diagnostic systems for low cost improvement in signal amplification and limit of detection.


Electrochemical Techniques , Pseudomonas aeruginosa/isolation & purification , Pyocyanine/analysis , Body Fluids/chemistry , Body Fluids/microbiology , Carbon/chemistry , Cellulose/analogs & derivatives , Cellulose/chemistry , Copper/chemistry , Electrochemical Techniques/instrumentation , Electrodes , Humans , Osmotic Pressure
13.
J Agric Food Chem ; 67(16): 4603-4610, 2019 Apr 24.
Article En | MEDLINE | ID: mdl-30964288

In this paper, a biodegradable gold coated zein film surface enhanced Raman spectroscopy (SERS) platform, with gold nanoparticles (AuNPs) deposited on the surface to further enhance the Raman signal, was used to detect pyocyanin (PYO), the toxin secreted by Pseudomonas aeruginosa. An inverted pyramid structure imprinted on a zein film and gold coated during the transfer process was further improved with the deposition and fixing of gold nanoparticles, which resulted in enhancement of the SERS signal by approximately a decade. This new platform served as a lab-on-a-chip sensor to enable the sensitive and rapid detection of PYO in drinking water. The size, distribution, and morphology of the zein film nanostructures including the presence and distribution of gold nanoparticles were characterized by scanning electron microscopy (SEM). The new zein-based platform has the advantage of being largely biodegradable compared with commercial silicon- or glass-based platforms. The limit of detection for PYO using the newly developed zein-based SERS sensor platform was calculated as 25 µM, considerably lower than the concentration of PYO in the blood of people with cystic fibrosis which has been reported to be 70 µM.


Bacterial Toxins/analysis , Biosensing Techniques/methods , Pyocyanine/analysis , Spectrum Analysis, Raman/methods , Water Pollutants, Chemical/analysis , Biosensing Techniques/instrumentation , Drinking Water/analysis , Gold/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Spectrum Analysis, Raman/instrumentation , Zein/chemistry
14.
ACS Sens ; 4(1): 170-179, 2019 01 25.
Article En | MEDLINE | ID: mdl-30525472

Here, we use a recently developed electrochemical sensing platform of transparent carbon ultramicroelectrode arrays (T-CUAs) for the in vitro detection of phenazine metabolites from the opportunistic human pathogen Pseudomonas aeruginosa. Specifically, redox-active metabolites pyocyanin (PYO), 5-methylphenazine-1-carboxylic acid (5-MCA), and 1-hydroxyphenazine (OHPHZ) are produced by P. aeruginosa, which is commonly found in chronic wound infections and in the lungs of cystic fibrosis patients. As highly diffusible chemicals, PYO and other metabolites are extremely toxic to surrounding host cells and other competing microorganisms, thus their detection is of great importance as it could provide insights regarding P. aeruginosa virulence mechanisms. Phenazine metabolites are known to play important roles in cellular functions; however, very little is known about how their concentrations fluctuate and influence cellular behaviors over the course of infection and growth. Herein we report the use of easily assembled, low-cost electrochemical sensors that provide rapid response times, enhanced sensitivity, and high reproducibility. As such, these T-CUAs enable real-time electrochemical monitoring of PYO and another extremely reactive and distinct redox-active phenazine metabolite, 5-methylphenazine-1-carboxylic acid (5-MCA), from a highly virulent laboratory P. aeruginosa strain, PA14. In addition to quantifying phenazine metabolite concentrations, changes in phenazine dynamics are observed in the biosynthetic route for the production of PYO. Our quantitative results, over a 48-h period, show increasing PYO concentrations during the first 21 h of bacterial growth, after which PYO levels plateau and then slightly decrease. Additionally, we explore environmental effects on phenazine dynamics and PYO concentrations in two growth media, tryptic soy broth (TSB) and lysogeny broth (LB). The maximum concentrations of cellular PYO were determined to be 190 ± 5 µM and 150 ± 1 µM in TSB and LB, respectively. Finally, using desorption electrospray ionization (DESI) and nanoelectrospray ionization (nano-ESI) mass spectrometry we confirm the detection and identification of reactive phenazine metabolites.


Carbon/chemistry , Microelectrodes , Pseudomonas aeruginosa/metabolism , Pyocyanine/analysis , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Microarray Analysis/methods , Phenazines/analysis , Phenazines/metabolism , Pyocyanine/biosynthesis , Pyocyanine/metabolism , Reproducibility of Results , Spectrometry, Mass, Electrospray Ionization
15.
Anal Chem ; 90(12): 7761-7768, 2018 06 19.
Article En | MEDLINE | ID: mdl-29851349

Early screening of clinically relevant pathogens in the environment is a highly desirable goal in clinical care, providing precious information that will improve patient-care outcomes. In this work, a glove-based electrochemical sensor has been designed for point-of-use screening of Pseudomonas aeruginosa's virulence factors. The methodology used for the elaboration of the fabric platform relied on printing the conductive inks on the index and middle fingers of the glove, with the goal of screening pyocyanin and pyoverdine targets. The analytical signatures of the analytes were recorded in about 4 min, via the rapid and selective square-wave-voltammetry technique. Finger-based sensors display good performance and discrimination between the targets and potential interferences, along with good reproducibility. The sensors featured linearity over the 0.01-0.1 µM range for pyocyanin and 5-50 µM range for pyoverdine, with sensitivities of 2.51 µA/µM for pyocyanin and 1.09 nA/µM for pyoverdine ( R2 = 0.990 and 0.995, respectively) and detection limits of 3.33 nM for pyocyanin and 1.66 µM for pyoverdine. Moreover, the sensors were tested in binary mixtures of analytes, with successful outcomes. In order to gain information from the surrounding environment, the active electronic areas of the printed fingers were coated with a conductive hydrogel matrix, and relevant target surfaces were "swiped for notification" of contaminants. The simple fabrication, low-cost, and reusability of the proposed glove are likely to underpin the progressive drive of wearable sensors toward decentralized environmental and healthcare applications.


Electrochemical Techniques , Oligopeptides/analysis , Printing , Pseudomonas aeruginosa/chemistry , Pyocyanine/analysis , Virulence Factors/analysis , Electrochemical Techniques/instrumentation , Electrons , Humans , Printing/instrumentation , Solutions
16.
PLoS One ; 13(3): e0194157, 2018.
Article En | MEDLINE | ID: mdl-29566025

Pyocyanin is a toxin produced by Pseudomonas aeruginosa. Here we describe a novel paper-based electrochemical sensor for pyocyanin detection, manufactured with a simple and inexpensive approach based on electrode printing on paper. The resulting sensors constitute an effective electrochemical method to quantify pyocyanin in bacterial cultures without the conventional time consuming pretreatment of the samples. The electrochemical properties of the paper-based sensors were evaluated by ferri/ferrocyanide as a redox mediator, and showed reliable sensing performance. The paper-based sensors readily allow for the determination of pyocyanin in bacterial cultures with high reproducibility, achieving a limit of detection of 95 nM and a sensitivity of 4.30 µA/µM in standard culture media. Compared to the similar commercial ceramic based sensors, it is a 2.3-fold enhanced performance. The simple in-house fabrication of sensors for pyocyanin quantification allows researchers to understand in vitro adaptation of P. aeruginosa infections via rapid screenings of bacterial cultures that otherwise are expensive and time-consuming.


Biosensing Techniques , Paper , Pseudomonas Infections , Pseudomonas aeruginosa , Pyocyanine , Virulence Factors , Humans , Pseudomonas Infections/diagnosis , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Pseudomonas aeruginosa/pathogenicity , Pyocyanine/analysis , Pyocyanine/metabolism , Sensitivity and Specificity , Virulence Factors/analysis , Virulence Factors/metabolism
17.
Anal Bioanal Chem ; 410(19): 4737-4748, 2018 Jul.
Article En | MEDLINE | ID: mdl-29470663

The identification and quantification of molecules involved in bacterial communication are major prerequisites for the understanding of interspecies interactions at the molecular level. We developed a procedure allowing the determination of 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) and the virulence factor pyocyanin (PYO) formed by the Gram-negative bacterium Pseudomonas aeruginosa. The method is based on dispersive liquid-liquid microextraction from small supernatant volumes (below 10 µL) followed by quantitative matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). The use of ionic liquid matrix led to a lowered limit of detection for pyocyanin and, due to suppression of matrix background signals, easy to interpret mass spectra compared to crystalline matrices. Using an isotope-labeled pyocyanin standard synthesized in small-scale synthesis, quantitative analysis spanning approximately one order of magnitude (0.5 to 250 fmol) was feasible. The method was successfully applied to the detection of the signaling molecules PQS and HHQ in cultures of P. aeruginosa strains isolated from sputum of cystic fibrosis patients and allowed a highly sensitive quantification of PYO from these cultures. Hence, the developed method bears the potential to be used for screening purposes in clinical settings and will help to decipher the molecular basis of bacterial communication. Graphical abstract Ionic liquid matrices for the detection and quantification of the toxin pyocyanin and other signaling molecules from P. aeruginosa by MALDI MS.


4-Quinolones/analysis , Ionic Liquids/chemistry , Liquid Phase Microextraction/methods , Pseudomonas aeruginosa/chemistry , Pyocyanine/analysis , Quinolones/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Cystic Fibrosis/microbiology , Humans , Isotope Labeling/methods , Pseudomonas aeruginosa/physiology , Quorum Sensing , Virulence Factors/analysis
18.
ACS Chem Biol ; 13(3): 657-665, 2018 03 16.
Article En | MEDLINE | ID: mdl-29303546

Targeting the main three networking systems, viz. Las, RhI, and PQS, via natural quenchers is a new ray of hope for combating the persistent behavior of Pseudomonas aeruginosa. In the bacterial chemical vocabulary pyocyanin, N-AHLs and rhamnolipids are the main keywords, which are responsible for the social and nomadic behavior of P. aeruginosa. In the present work, LC-MS based real-time qualitative and quantitative analysis of pyocyanin, green phenazine, N-AHLs, and rhamnolipids were performed on P. aeruginosa PAO1. The quantitative analysis indicates that the production of pyocyanin and NHSLs increases with time while the production of rhamnolipids discontinued after 16 h. This indicates the emergence of persisters in the medium instead of planktonic cells. Rhamnolipids acting as a surfactant enhances the motility of the bacterial cells, whereas the pyocyanin is responsible for the biofilm formation. In a microtiter plate based assay, an effect of capsaicin and 6-gingerol was recorded. In the presence of capsaicin and 6-gingerol, a substantial decrease in the production of rhamnolipids, phenazine, quinolone, and N-AHLs was observed. Most interestingly, the 6-gingerol treatment led to a drastic decrease of rhamnolipids, phenazine, quinolone, and N-AHLs versus capsaicin. These studies demonstrate the effectiveness of the capsaicin and 6-gingerol on Las, PQS, and Rhl circuits in a bacterium in order to understand the persistent and social behavior. Here, we are reporting LC-MS/MS based qualitative and quantitative analysis of QS molecules by taking a low volume of culture (up to 200 µL). This method can be used as a platform to screen the new antivirulence agents for fighting the resistant behavior of P. aeruginosa during biofilm formation.


Anti-Bacterial Agents/chemistry , Drug Discovery , Pseudomonas aeruginosa/drug effects , Quorum Sensing/drug effects , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Chromatography, Liquid , Glycolipids/analysis , Glycolipids/metabolism , Microarray Analysis , Phenazines/analysis , Phenazines/metabolism , Pyocyanine/analysis , Pyocyanine/metabolism , Quinolones/metabolism , Tandem Mass Spectrometry
19.
Article En | MEDLINE | ID: mdl-29090193

Cyclic-di-GMP (c-di-GMP) is an intracellular secondary messenger which controls the biofilm life cycle in many bacterial species. High intracellular c-di-GMP content enhances biofilm formation via the reduction of motility and production of biofilm matrix, while low c-di-GMP content in biofilm cells leads to increased motility and biofilm dispersal. While the effect of high c-di-GMP levels on bacterial lifestyles is well studied, the physiology of cells at low c-di-GMP levels remains unclear. Here, we showed that Pseudomonas aeruginosa cells with high and low intracellular c-di-GMP contents possessed distinct transcriptome profiles. There were 535 genes being upregulated and 432 genes downregulated in cells with low c-di-GMP, as compared to cells with high c-di-GMP. Interestingly, both rhl and pqs quorum-sensing (QS) operons were expressed at higher levels in cells with low intracellular c-di-GMP content compared with cells with higher c-di-GMP content. The induced expression of pqs and rhl QS required a functional PqsR, the transcriptional regulator of pqs QS. Next, we observed increased production of pqs and rhl-regulated virulence factors, such as pyocyanin and rhamnolipids, in P. aeruginosa cells with low c-di-GMP levels, conferring them with increased intracellular survival rates and cytotoxicity against murine macrophages. Hence, our data suggested that low intracellular c-di-GMP levels in bacteria could induce QS-regulated virulence, in particular rhamnolipids that cripple the cellular components of the innate immune system.


Cyclic GMP/analogs & derivatives , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/genetics , Quorum Sensing/genetics , Animals , Bacterial Proteins/genetics , Biofilms/growth & development , Cyclic GMP/metabolism , Glycolipids/analysis , Glycolipids/metabolism , Mice , Operon/genetics , Pyocyanine/analysis , Pyocyanine/metabolism , RAW 264.7 Cells , Transcription Factors/genetics , Transcriptome , Virulence/genetics
20.
Biosens Bioelectron ; 97: 65-69, 2017 Nov 15.
Article En | MEDLINE | ID: mdl-28570940

In clinical practice, delays in obtaining culture results impact patient care and the ability to tailor antibiotic therapy. Despite the advancement of rapid molecular diagnostics, the use of plate cultures inoculated from swab samples continues to be the standard practice in clinical care. Because the inoculation culture process can take between 24 and 48h before a positive identification test can be run, there is an unmet need to develop rapid throughput methods for bacterial identification. Previous work has shown that pyocyanin can be used as a rapid, redox-active biomarker for identifying Pseudomonas aeruginosa in clinical infections. However, further validation is needed to confirm pyocyanin production occurs in all clinical strains of P. aeruginosa. Here, we validate this electrochemical detection strategy using clinical isolates obtained from patients with hospital-acquired infections or with cystic fibrosis. Square-wave voltammetric scans of 94 different clinical P. aeruginosa isolates were taken to measure the concentration of pyocyanin. The results showed that all isolates produced measureable concentrations of pyocyanin with production rates correlated with patient symptoms and comorbidity. Further bioinformatics analysis confirmed that 1649 genetically sequenced strains (99.9%) of P. aeruginosa possess the two genes (PhzM and PhzS) necessary to produce pyocyanin, supporting the specificity of this biomarker. Confirming the production of pyocyanin by all clinically-relevant strains of P. aeruginosa is a significant step towards validating this strategy for rapid, point-of-care diagnostics.


Biosensing Techniques/instrumentation , Electrochemical Techniques/instrumentation , Pseudomonas Infections/diagnosis , Pseudomonas aeruginosa/isolation & purification , Pyocyanine/analysis , Biosensing Techniques/economics , Electrochemical Techniques/economics , Humans , Point-of-Care Systems/economics , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , Pyocyanine/metabolism
...